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Analysis of Coupled Slots and Coplanar Strips on

Dielectric Substrate

JEFFREY B. KNORR, MEMBER, 1EEE, AND KLAUS-DIETER KUCHLER, STUDENT MEMBER, IEEE

Abstract—A frequency-dependent hybrid-mode analysis of single
and coupled slots and coplanar strips is presented. The dispersion
characteristic and characteristic impedance of the structures are
obtained by applying a Fourier transform technique and evaluating
the resulting expressions numerically using the method of moments.
Numerical results are presented and compared with results published
by other investigators. The experimental performance of a slot-line
coupler is compared with predicted performance based upon the
results presented here for coupled slots. Excellent agreement has
been obtained in all cases.

I. INTRODUCTION

OPLANAR transmission lines have been studied by
many investigators, mainly because they are easily
adaptable to shunt-element connections without the need
to penetrate the dielectric substrate as in the case of
microstrip lines. Cohn [1] investigated the slot line and
found an approximate analytic expression for the disper-
sion characteristic and the characteristic impedance by
converting the slot line into a rectangular waveguide
configuration. Recently this transmission line was analyzed
by a new method proposed by Itoh and Mittra [2], but
only to the extent that the dispersion characteristics were
computed. To the authors’ knowledge, there has been no
other analysis published for the characteristic impedance
of slot line besides Cohn’s method [17, [3].

In connection with the increased interest in coplanar
transmission lines, the need for an analysis of coupled
slot lines or coplanar waveguide (CPW) structures is
obvious. Wen [4] studied this transmission line with the
assumption that the dielectric substrate is thick enough
to be considered infinite for conformal mapping purposes.
He also shows some theoretical results for two coplanar
parallel strips, again on an infinitely thick dielectric
substrate. For large values of ¢, the relative permittivity
of the substrate, this assumption may be practical, but
it appears impractical for relatively small values of e
and for thin substrates. An alteration of this method used
by Wen is given by Davis et al. [5] and takes the finite
thickness of the dielectric substrate into account but also
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uses a quasi-static approximation, and thus lacks any
frequency-dependent information on the behavior of
phase velocity and characteristic impedance.

The purpose of this paper is to outline a new approach
which was first suggested by Itoh and Mittra [27] and
then extended by the authors to yield the characteristic
impedance of the slot line as well as the dispersion charac-
teristic and characteristic impedances of a pair of coupled
slot lines in the odd and the even modes. During the
development of the mathematical formulation, it was an
easy extension to derive also the characteristics of a pair
of coplanar parallel strips. The method is quite general
and has also been used to analyze microstrip, although the
results will not be presented here.

II. DISPERSION RELATIONSHIP ANALYSIS
FOR A SINGLE SLOT LINE

A wave propagation problem on a slot transmission
line, shown in Fig. 1, means, in general, the solution to
the wave equation in an inhomogeneous medium with
inhomogeneous boundary conditions. Moreover, the
electric field in the slot is not known, and rather than
finding the Green’s function in a closed form, the in-
vestigator is forced to find an approximate solution. This
led Cohn to his approach of using the infinite orthogonal
set of waveguide modes, in other words, a complete set
of functions, and a conversion from the slot-line con-
figuration into a waveguide configuration by the use of
electric and magnetic walls.

Itoh and Mittra [2] introduced a new technique for
the analysis of the slot-line dispersion characteristic. To
obtain a full understanding of the methods used in this
paper, some retterations from [27] are necessary.

It is known that all hybrid-field components can be
obtained from a superposition of TE and TM modes
which are related to the two sealar potential functions
¢°(z,y) and ¢*(xz,y), where the superscripts e and % denote
electric and magnetic, respectively. The axial components
of TM and TE modes are then
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Fig. 1. Slot line.
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E, = k’¢*(2,y) exp (jBe)
and
Hz = k62¢h(x7y) €xp (:E]ﬁZ)

respectively, where 8 is the propagation constant, assum-
ing no losses, and

k2 = k2 — @
with

k,- = w(emi)llz, 1 = 1,2,3

defining the spatial region as shown in Fig. 1.

Both scalar potential functions satisfy the Helmholtz
equation which is transformed into the Fourier domain
thus converting a second-order partial differential equa-
tion into an ordinary differential equation. The solutions
to these two ordinary differential equations can then be
written as

¢ (ayy) = A*(a) exp [—m1(y — D) ]

@ (a,yy) = B¢(a) sinh v;y + C%(a) coshy.y (1)
&5 (a,y) = D*(a) exp (v1y)
@14 () = AM(a) exp [—m(y — D) ]
®*(a,y) = B*(a) sinh voy + C*(a) cosh vy (2)
®5*(0,y) = D*(a) exp (v1y)
‘Wwhere
v? = o + § — k? (3)

and the subscript defines the region. The preceding equa-
tions are found in [2, egs. (2) and (3)]. It is important
to observe that in region 2, 4,2 < 0 for small values of
a, which megns that the hyperbolic functions are replaced
by trigonometric functions.

The eight unknown coefficients A¢ through D* are
related to the horizontal electric- and magnetic-field
components at the interfaces y = 0 and y = D by the
continuity conditions, and can be related also to the
surface current density on the metal and the electric
field in the slot at y = D.

If we denote the Fourier transforms of the z- and z-di-
rected current-density and electric-field components by

&(a) = F{E(2)}  &(a) = F{E.(2)}
Jo(@) = F{j-(x)} J:(a) = F{j.(2)}

we obtain a set of coupled equations of the form

{le,ﬁ) M;(,8) ][g,@ } [&;(a} ]

= (4)
M3(a)ﬁ) M4(0{,6> gz(a) 8;(0{)
where the elements of the M-matrix are the Fourier trans-
forms of dyadic Green’s function components.

If the M-matrix is inverted, we obtain a new matrix N
and a second set of coupled equations
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Ni(@f) Naef)|[e()]  [9e(e)
- LB

Ns(a,8) Ni(e,8) gs(a)

This last formulation is equivalent to [2, eq. (4)].

Up to this point, the formulation of the problem is
exact; no approximation has been made. If, however, the
electric-field and current-density components are ex-
panded in infinite series using a complete set of basis
functions, and Galerkin’s method [6] is applied, a homoge-~
neous system of linear equations can be found [2, egs.
(7) and (8)]. An iteration scheme for 8 can be used to
find a nontrivial solution for this set of equations.

The remaining question is what kind of basis functions
to choose. The choice of this complete set of basis functions
is arbitrary in a mathematical sense, since as long as this
set is complete, any closed form of the field components
can be represented by it. However, the rate of convergence
of the series representation will depend on how well the
first few terms approximate the closed form. In genéral,
this requires some a prior: knowledge of the true dis-
tributions.

In order to determine the sensitivity of the previously
outlined method to the choice of basis functions, an
investigation of various one-term approximations was
made. The electric-field components were assumed to be
of the form

&.(a)

1, le| < W/2
=T [O, elsewhere (6a)
—1, -W/R2<z<0
€; = 1, O<z< W/2
0, elsewhere. (6b)

Another choice which certainly approximates the fields
more closely is

{[(W/2)2 - 2| < W/2

ey =

0, elsewhere (7a)
'w[(W/W — o 2| < W/2

e, =
0, elsewhere (7b)

which was used in [27]. -

The use of 2- and z-directed field components is called
the second-order approximation. A reduction of computer
time is possible by assuming F, = 0, which we will refer
to as the first-order approximation. The problem then
reduces to the evaluation of a single integral instead of
four during each iteration for 8. In Fig. 2, the results from
these four different approximations are shown, namely
the first- and second-order approximations with either
basis-function set (6) or (7), and are compared with
results from [3]. Although no indication about the rate
of convergence and hence the accuracy of the two series
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Fig. 2. Dispersion characteristic of a single slot.

for a general problem can be obtained, a comparison for
this particular problem shows that the largest deviation
between the different approximations is less than 4 per-
cent. It is to be noted that the basis set given by (7) is
superior to that given by (6) and that the first- and
second-order solutions based on (7) agree very well with
Cohn’s results. The first- and second-order solutions based
upon (6) give less accurate results with the second-order
approximation being the poorer of the two due to the
physically impossible discontinuities of (6b).

Using one specific set of parameters in the 1-3-GHz
range, a comparison of the magnitudes of the z and 2
components of electric field was made. The z-directed
electric-field component was found to have a magnitude
greater than ten times that of the z-directed component.
This provides further justification for use of the more
efficient first-order approximation (E, = 0).

III. CHARACTERISTIC IMPEDANCE OF A
SINGLE SLOT LINE

The definition of the characteristic impedance for an
ideal transmission line is uniquely defined by static quan-
tities, but is somewhat arbitrary for the slot transmission
line due to the non-TEM nature of this problem. One
possible choice is to define it as

Ve

To =
' 9P,

(8

where V, is the slot voltage and Py, is the time-averaged
power flow on the slot line which is given by

Puw = 3 Re [[ E X H-a,dz dy. 9)
The field components in this integral can be expressed in
terms of the scalar potential functions by the use of Max-
well’s equations.

Since the slot line is an open-boundary structure, the
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limits of integration in (9) are infinite, which makes the
use of Paseval’s theorem feasible. By this method (9) is
transformed into the spectral domain where again a double
integral is obtained with the variables of integration e
and y instead of x and 9. Equation (9) is then of the form

9% (@)
dy

Pove = ﬁ-Re/” /‘°° f[@"(a), @ (a),

—w T —®

P (a)

3y ) By y:| do dy (10)

The integral in (10) is a function of the Fourier trans-
formed scalar potentials which were given in (1) and
(2). Since the dispersion problem was already solved and
the dependence of the coefficients A¢(a) through D*(e)
on the electric-field distributions is known, the integral
of (10) can be evaluated.

Equations (1) and (2) show a simple functional de-
pendence on the variable y, and thus integration with
respect to ¥ may be accomplished analytically in (10).
One then obtains a single integral of the form

1 -]
Poe = —Re / g(a,8) da. (11)
4 o

This integral has to be separately evaluated for the three
spatial regions since the solution to the wave equation
differs in each of these, as does the integrand of (11).
Finally, to get all the necessary coefficients for (8), the
voltage Vy has to be computed. This involves simply the
integration of the assumed electric-field distribution across
the slot and can be done analytically. The evaluation of
(11) must be done numerically on a digital computer.
Although the limits of integration are infinite, the rapid
decay of the integrand for large values of « and its well-
behaved form make this computational task routine.

It should be noted that the amount of algebraic com-
plexity in (11) is quite large and lengthy, and for this
reason, the details are not presented here. For numerical
purposes, the complexity is somewhat reduced by neglect~
ing the z-directed electric-field component which means
that the spatial phase shift between E, and E, requires no
algebraic manipulation. It will be shown in the comparison
between this and Cohn’s method that use of the first-order
solution results in good agreement. A computer program
was developed which first computes the dispersion charac-
teristic and then the characteristic impedance. Although
the first- and second-order approximations for the dis-
persion calculation, as well as the two distributions (6)
and (7) were investigated, the following results were
computed using a second-order solution for the dispersion
calculations [see (7)] and a first-order solution for charac-
teristic-impedance calculation.

The comparison of these results with the values ob-
tained by Mariani et al. [37]is shown in Fig. 3 and indicates
a very close agreement for the two arbitrarily chosen sets
of parameters. The average computation time on the IBM
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Fig. 8. Characteristic impedance of a single slot.

360 computer was 27 s for each value of D/). A first-order
solution for the dispersion characteristic used in connection
with distribution (6) required only 2.5 s and produced
results which differed by less than 10 percent from those
obtained using the second-order solution.

IV. CHARACTERISTICS OF A PAIR OF COUPLED
SLOT LINES OF EQUAL WIDTH

Since the mathematical method developed so far pro-
duced results in agreement with those obtained by Cohn
(which have been confirmed by several experiments) the
method was applied to the analysis of two coupled slot
lines, the geometry of which is shown in Fig. 4. This exten-~
sion is straightforward for the following reason. The
coefficients N; through N, are functions of «, 8, €, and
D, and are independent of the slot configuration. The slot
configuration enters into the calculation only through
coefficients in the assumed field distributions or basis
functions. Thus it is necessary only to modify (7) such
that the mathematical description of the basis functions
corresponds to the physical configuration and field dis-
tributions of the coupled slots.

Fig. 5 shows the two assumed distributions of electric
field e, for the even and odd modes, respectively. The
change in the field component e, is similar. In the Fourier
domain, one simply applies the shifting theorem to the
transforms of (7) to obtain the new transforms. Further-
more, (8) is changed to

Ve
P avg

Z(] == (12)

since the total time-averaged power surrounding the
transmission lines is now due to two lines. Beyond this
change, no major modifications were necessary to use the
existing computer program. Figs. 6 and 7 show the results
for several values of ¢, where Z;, and Zy, denote the even-
and odd-mode characteristic impedances, respectively. A
first-order approximation was used to calculate the dis-
persion and the characteristic impedances to reduce the
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Fig. 5. Assumed field distribution for coupled slots.
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computer time which was, on the average, 80 s for both
the odd and even modes. To the authors’ knowledge, these
results are basically new in the literature and can be only
partially compared to other results. A quantitative com-
parison between these results for the odd-mode charac-
teristic Impedance and the quasi-static CPW impedance
calculated by Davis et al. [5] can be made and is shown in
Tig. 8 for W/D = 1 (or in the notation of [5], ¢ = &) at
frequencies of 1, 3, and 5 GHz. Reasonable agreement
exists for the lower frequency range. Note that the charac-
teristic impedance of the CPW is one half of Zy, for equal
slot widths. Another qualitative check on these results
can be made by investigating the even-mode characteristic
impedance in the limiting case as S, the separation be-
tween slots, becomes very small. One expects that Zg, will
be close to one half of Z;, where Z, is the characteristic
impedance of a single slot whose width is twice the width
of the slot in the coupled structure. The dispersion charac-
teristic for both structures, however, should be the same.
This comparison is made in Figs. 6(a) and 7(a). It is
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interesting to observe the coupling and decoupling between
the waves in the two slots as the frequency varies for large
values of S/D. As the frequency increases, the waves
become more closely bound to the slot which means there
is less interaction between the two waves. In this case,
Zs, and Zy, converge to Z,, the characteristic impedance
of a single slot with no coupling.

Another interesting phenomenon is the fact that for a
fixed D/\ the ratio A’/X in the even mode first increases
and then decreases as S/D increases from very small to
larger values as shown in Figs. 6(b) and 7(b). An ex-
planation may be given as follows. For small enough values
of S/D, the metal strip between the slots has little effect
on the propagating wave, and the wave propagates as if
it were in a slot of width 2(W /D) + S/D. Increasing the
separation between the slots effectively increases slot
width (the metal separation still has little effect), and
the ratio \’/\ increases. As S/D continues to increase, the
two waves start to decouple and behave more as two
waves on two slot lines which will finally be totally de-
coupled. Each wave then propagates on a slot line with
width W /D, hence A’/ decreases.

V. CHARACTERISTICS OF COPLANAR
STRIP LINE

A configuration of a pair of coplanar strip lines is shown
in Fig. 9. The dispersion characteristic and the charac-
teristic impedance can be found by again using Galerkin’s
method in the Fourier transform domain. Since an ap-
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proximation of the current density across each strip is
more feasible than an approximation of the electric field
at y = D, the equation set (4) was used to determine the
dispersion characteristic. A first-order solution was ob-
tained assuming that the surface current in the z direction
was negligible and that the z-directed surface current was
of the form

+1
{(W/2)2 — [z £ (S + W)/2]}»’
8/2< |z <82+ W

je(z) = 4

0, elsewhere (13)

over eachstrip. The characteristicimpedance was calculated
as

1sof S/0R5

I
40}
Th
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®)

Z, IN OHMS
3

(a) Dispersion characteristics of coplanar strips with
= 1.5, ¢ = 9. (b) Characteristic impedance of coplanar
strips with W/D = 1.5, ¢ = 9.

Z() = 2Pa,vg/[02 (14:)

where I, is the total current on one strip. Any further
necessary formulations were very similar to the previously
outlined procedure for slot lines. Three representative
graphs for the dispersion characteristics and charac-
teristic impedances are shown in Figs. 10-12. Reasonable
agreement for the impedances is found by comparing the
present values with the results by Wen [4]. However, as
one might expect, the present method yields somewhat
larger values for the impedance due to the finite dielectric
substrate.

VI. EXPERIMENTAL RESULTS

Although all previous comparisons showed reasonable
agreement with existing results, some effort was devoted
to obtaining experimental verification of this work. One
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experimental check is provided in the work of Luna [7]
who measured the characteristics of coplanar strips and
found an agreement of better than 5 percent between
theory and experiment. The authors further confirmed
the accuracy of the results for coupled slots by construct-
ing a slot-line coupler.

Coupled slots (W/D = 0.470, S/D = 1.08) were etched
onto one side of a 1-0z copper surface on a dielectric sub-
strate with D = 0.125 in, and e = 16. Microstrip-to-slot
transitions [8] were used at three ports, and the fourth
was terminated with a chip resistor. A center frequency
of 3 GHz (I = 1.6 cm) was chosen.

The work of Jones and Bolljahn [117] has been extended
by Zysman and Johnson [97] who have derived the im-
pedance matrix of dispersive coupled lines. Using the
results presented earlier, the elements of the impedance
maitrix of the coupler were evaluated, and its performance
as a function of frequency was calculated. The theoretical
performance is compared with experiment in Fig. 13. Good
correlation is evident. The deterioration of directivity
noted experimentally at the band edges is in all probability
due to the rising VSWR of the microstrip—slot transitions
at these frequencies. It should be noted that the behavior
of this coupler is different than that of the contradirec-
tional (nondispersive) strip-line coupler. Here the dif-
ference in the phase velocities of the odd and even modes
results in codirectional coupling as in waveguide (see also
Mariani and Agrios [10]). Further investigations into
the behavior of dispersive couplers have been undertaken
and preliminary results have been reported elsewhere [12].

VII. CONCLUSIONS

An efficient numerical method has been presented for
obtaining the dispersion characteristics and the charac-
teristic impedances for a sirgle slot line, two parallel slot
lines of equal width, and two parallel coplanar strips.
Solutions to the wave propagation problem were obtained
in the Fourier transform domain. Numerical results ob-
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tained by this method have been presented and compared
or related to other existing data and to experiment. In all
cases, good agreement was obtained.

The transform technique is relatively straightforward
in concept, but extensive algebraic manipulation of the
resulting equations is required to achieve computational
efficiency. The labor involved should not be underesti-
mated. For this reason, the equations have not been
presented here in detail. The authors expect to make this
information available in a technical report in the near
future. It is also anticipated that design curves will be
made available in a technical report.
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Scattering Matrices of Junction Circulator with

Chebyshev Characteristics

JOSEPH HELSZAJN, MEMBER, IERE

Abstract—The purpose of this paper is to derive the scattering
matrix of junction circulators with Chebyshev characteristics. This
is done by forming the overall eigenvalues of the circulator one at
a time in terms of the A BCD matrix of the matching network and
the initial set of the junction eigenvalues. This paper deals both with
the case where the frequency variation of the in-phase eigennetwork
at the gyrator terminals is neglected compared to that of the coun-
terrotating ones, and with the case where it is included. It is found
that the former approach is in excellent agreement with the results
obtained by assuming a 1-port model for the circulator. The influence
of this eigennetwork on the overall frequency response is studied
separately by combining the electromagnetic and network problems
in the case of the stripline circulator,

INTRODUCTION

HE THEORY of wide-band circulators using external

matching networks usually starts by assuming that
the equivalent circuit of the device is a 1-port network
[171-[87]. This 1-port circuit consists of a shunt conductance
in parallel with either a lumped or distributed resonator.
It assumes that the frequency behavior of the in-phase
eigennetwork at the gyrator terminals may be omitted
compared with that of the two counterrotating ones. The
bandwidth over which this approximation applies has been
discussed in [87] in terms of the resonant frequencies of the
counterrotating eigennetworks, but a fuller investigation
of the omission of the frequency variation of the in~phase
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eigennetwork on the quality of this equivalent circuit
appears desirable.

The most general representation of the 3-port circulator
is in terms of the eigenvalues of the scattering matrix [9].
The eigenvalues of this matrix are reflection coefficients
associated with the different ways of exciting the junction.
The entries of the scattering matrix are constructed by
taking linear combinations of these eigenvalues. This
method therefore yields not only the reflection coefficient
at the input port but also the transmission coefficients of
the junction. The approach is quite general and applies
to the m-port junction also. It starts by representing the
matching network at each port by its ABCD matrix. The
eigenvalues at the input terminals of the junction are then
obtained one at a time in terms of the ABCD parameters
and the initial set of eigenvalues at the gyrator terminals.

In this paper the boundary condition for circulators
with Chebyshev frequency characteristics is first estab-
lished at the terminals of the matching network in terms
of the eigenvalues of the scattering matrix by omitting the
frequency variation of the in-phase eigennetwork at the
gyrator terminals and subsequently reintroducing it to
study its influence on the overall frequency response. It
is found that the former results are in excellent agreement
with those obtained by connecting the matching network
directly to the 1-port circuit [8].

The influence of the in-phase eigenvalue on the overall
frequency response of the circulator is studied separately
in the case of the stripline circulator by combining the



