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Analysis of Coupled Slots and Coplanar Strips on

Dielectric Substrate

JEFFREY B. KNORR, MEMBER, IEEE, AND KLAUS-DIETER KUCHLER, STUDENT MEMBER, IEEE

Absfract-A frequency-dependent hybrid-mode analysis of single
and coupled slots and coplanar strips is presented. The dispersion
characteristic and characteristic impedance of the structures are
obtained by applying a Fourier transform technique and evaluating
the resulting expressions numerically using the method of moments.
Numerical results are presented and compared with results published
by other investigators. The experimental performance of a slot-line
coupler is compared with predicted performance based upon the
results presented here for coupled slots. Excellent agreement has

been obtained in all cases.

I. INTRODUCTION

c
OPLANAR transmission lines have been studied by

many investigators, mainly because they are easily

adaptable to shunhelement connections without the need

to penetrate the dielectric substrate as in the case of

rnicrostrip lines. Cohn [1] investigated the slot line and

found an approximate analytic expression for the disper-

sion characteristic and the characteristic impedance by

converting the slot line into a rectangular waveguide

configuration. Recently this transmission line was analyzed

by a new method proposed by Itoh and Mittra [2], but

only to the extent that the dispersion characteristics were

computed. To the authors’ knowledge, there has been no

other analysis published for the characteristic impedance

of slot line besides Cohn’s method [1], [3].

In connection with the increased interest in coplanar

transmission lines, the need for an analysis of coupled

slot lines or coplanar waveguide ( CPW) structures is

obvious. Wen [4] studied this transmission line with the

assumption that the dielectric substrate is thick enough

to be considered infinite for conforrnal mapping purposes.

He also shows some theoretical results for two coplanar

parallel strips, again on an infinitely thick dielectric

substrate. For large values of c,, the relative permittivity

of the substrate, this assumption may be practical, but

it appears impractical for relatively small values of G

and for thin substrates. An alteration of this method used

by Wen is given by Davis et al. [5] and takes the finite

thickness of the dielectric substrate into account but also
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uses a quasi-static approximation, and thus lacks any

frequency-dependent information on the behavior of

phase velocity and characteristic impedance.

The purpose of this paper is to outline a new approach

which was first suggested by Itoh and Mittra [2] and

then extended by the authors to yield the characteristic

impedance of the slot line as well as the dispersion charac-

teristic and characteristic impedances of a pair of coupled

slot lines in the odd and the even modes. During the

development of the mathematical formulation, it was an

easy extension to derive also the characteristics of a pair

of coplanar parallel strips. The method is quite general

and has also been used to analyze microstrip, although the

results will not be presented here.

II. DISPERSION RELATIONSHIP ANALYSIS
FOR A SINGLE SLOT LINE

A wave propagation problem on a slot transmission

line, shown in Fig. 1, means, in general, the solution to

the wave equation in an inhomogeneous medium with

inhomogeneous boundary conditions. Moreover, the

electric field in the slot is not known, and rather than

finding the Green’s function in a closed form, the in-

vestigator is forced to find an approximate solution. This

led Cohn to hk approach of using the infinite orthogonal

set of waveguide modes, in other words, a complete set

of functions, and a conversion from the slotAine con-

figuration into a waveguide configuration by the use of

electric and magnetic walls.

Itoh and Mittra [2] introduced a new technique for

the analysis of the slot-line dispersion characteristic. To

obtain a full understanding of the methods used in this

paper, some reiterations from [2] are necessary.

It is known that all hybrid-field components can be

obtained from a superposition of TE and TM modes

which are related to the two scalar potential functions

@ (z,v) and @ (z, Y), where the superscripts e and h denote
electric and magnetic, respectively. The axial components

of TM and TE modes are then
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Fig. 1. Slot line.
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E, = k?+e(x,y) exp (+j~z)

and

H. = L%#JJ(x,y) exp (3+/?z)

respectively, where P is the propagation constant, assum-

ing no losses, and

~~ = ~i2 – p2

with

lk~ = OJ((ii/.Li)1/2, i = 1,2,3

defining the spatial region as shown in Fig. 1.

Both scalar potential functions satisfy the Helmholtz

equation which is transformed into the Fourier domain

thus converting a second-order partial differential equa-

tion into an ordinary differential equation. The solutions

to these two ordinary differential equations can then be

written as

@le(a,y) = A.”(a) exp [–yl(y – D)]

@2’(c2,y) = Be(a) sinh 72y + &(a) cosh 72Y

%’(cr,y) = ZY(a) exp (-yly)

@l’(a,v) = A’(aj exp [–-yl(y – D)]

@#(a,v) = B~(a) SiI1.h 72~ + Ch(a) cosh TZY

%fi(ajy) = Dk(a) exp (my)

where

~i2 = ~2 + /32 — ~i2

(1)

(2)

(3)

and the subscript defines the region. The preceding equa-

tions are found in [2, eqs. (2) and (3)]. It is important

to observe that in region 2, 722<0 for small values of

a, which means that the hyperbolic functions are replaced

by trigonometric functions.

The eight unknown coefficients Ae through Dh are

related to the horizontal electric- and magnetic-field

componefits at the interfaces y = O and y = D by the

continuity conditions, and can be related also to the

surface current density on the metal and the electric

field in the slot at y = D.
If we denote the Fourier transforms of the x- and z-di-

rected current-density and electric-field components by

G.(a) = ${ E.(z) } &z(a) = X{ E2(Z) )

g.(a) = T{jz(x) ] g.(a) = T{.iz(x) ]

we obtain a set of coupled equations of the form

[ 1[ I=L3‘4)
Ml(cY,@)J’12(43) 9z(@)

M3(@) M,(a,@) gz(a)

where the elements of the M-matrix are the Fourier trans-

forms of dyadic Green’s function components.

If the M-matrix is inverted, we obtain a new matrix N

and a second set of coupled equations

[ 1[I=LI ‘5)
Nl(a,fl)N2(@3) ‘&(a)

N,(a,i?) N,(a,@) &z(a)

This last formulation is equivalent to [2, eq. (4)].

Up to this point, the formulation of the problem is

exact; no approximation has been made. If, however, the

electric-field and current-density components are ex-

panded in infinite series using a complete set of basis

functions, and Galerkin’s method [6] is applied, a homoge-

neous system of linear equations can be found [2, eqs.

(7) and (8) ]. An iteration scheme for B can be used to

find a nontrivial solution for this set of equations.

The remaining question is what kind of basis functions

to choose. The choice of this complete set of basis functions

is arbitrary in a mathematical sense, since as long as this

set is complete, any closed form of the field components

can be represented by it. However, the rate of convergence

of the series representation will depend on how well the

first few terms approximate the closed form. In general,

this requires some a priori knowledge of the true dis-

tributions.

In order to determine the sensitivity of the previously

outlined method to the choice of basis functions, an

investigation of various one-term approximations was

made. The electric-field components were assumed to be

of the form

I

1, ]xl <w/2
e= =

o, elsewhere

[

–1, –w/2<x<o

e$ = 1, o<x <w/2

o, elsewhere. (6b)

Another choice which certainly approximates the fields

more closely is

I

[( w/2)2 – $2]-’/2, lzl<Tv/2
e%=

o, elsewhere (7a)

I

2[( W/2) z — ZZ]lIZ, Iz] <w/2

eZ =

o, elsewhere (7b)

which was used in [2].

The use of x- and ~directed field components is called

the second-order approximation. A reduction of computer

time is possible by assuming Ee = O, which we will refer

to as the first-order approximation. The problem then

reduces to the evaluation of a single integral instead of

four during each iteration for P. In Fig. 2, the results from

these four different approximations are shown, namely

the first- and second-order approximations with either

basis-function set (6) or (7), and are compared with

results from [3]. Although no indication about the rate

of convergence and hence the accuracy of the two series

(6a)
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Fig. 2. Dispersion characteristic of a-single slot.

for a general problem can be obtained, a comparison for

this particular problem shows that “the largest deviation

between the different approximations is less than 4 per-

cent. It is to be noted that the basis set given by (7) is

superior to that given by (6) and that the first- and

second-order solutions based on (7) agree very well with

Cohn’s results. The first- and second-order solutions based

upon (6) give less accurate results with the second-order

approximation being the poorer of the two due to the

physically impossible discontinuities of (6b).

Using one specific set of parameters in the 1-3-GHz

range, a comparison of the magnitudes of the x and z

components of electric field was made, The x-directed

electric-field component was found to have a magnitude

greater than ten times that of the z-directed component.

This provides further justification for use of the more

efficient firstirder approximation (Ez = O).

III. CHARACTERISTIC IMPEDANCE OF A

SINGLE SLOT LINE

The definition of the characteristic impedance for an

ideal transmission line is uniquely defined by static quan-

tities, but is somewhat arbitrary for the slot transmission

line due to the non-TEM nature of this problem. One

possible choice is to define it as

20=;
rtvg

(8)

where VO is the slot voltage and P,”. is the time-averaged

power flow on the slot line which is given by

P
/

– ~Re ~E X H*. a.dxdy.avg — 2 (9)
8

The field components in this integral can be expressed in

terms of the scalar potential functions by the use of Max-

well’s equations,

Since the slot line is an open-boundary structure, the

limits of integration in (9) are infinite, which makes the

use of Paseval’s theorem feasible. By this method (9) is

transformed into the spectral domain where again a double

integral is obtained with the variables of integration a

and y instead of x and y. Equation (9) is then of the form

a@(a) 1—,@,a, y ckdy. (10)
ay

The integral in (10) is a function of the Fourier trans-

formed scalar potentials which were given in (1) and

(2), Since the dispersion problem was already solved and

the dependence of the coefficients A“ (a) through Dh (a)
on the electric-field distributions is known, the integral

of (10) can be evaluated.

Equations (1) and (2) show a simple functional de-

pendence on the variable y, and thus integration with

respect to y may be accomplished analytically in (10).

One then obtains a single integral of the form

P al%=~Re/@ g ((x,L?) da.
—w

(11)

This integral has to be separately evaluated for the three

spatial regions since the solution to the wave equation

differs in each of these, as does the integrand of (11).

Finally, to get all the necessary coefficients for (8), the

voltage VO has to be computed. This involves simply the

integration of the assumed electric-field distribution across

the slot and can be done analytically. The evaluation of

(11) must be done numerically on a digital computer.

Although the limits of integration are infinite, the rapid

decay of the integrand for large values of a and its well-

behaved form make this computational task routine.

It should be noted that the amount of algebraic com-

plexity in (11) is quite large and lengthy, and for this

reason, the details are not presented here. For numerical

purposes, the complexity is somewhat reduced by neglect-

ing the z-directed electric-field component which means

that the spatial phase shift between En and E. requires no

algebraic manipulation. It will be shown in the comparison

between this and Cohn’s method that use of the first-order

solution results in good agreement. A computer program

was developed which first computes the dispersion charac-

teristic and then the characteristic impedance. Although

the first- and second-order approximations for the dis-

persion calculation, as well as the two distributions (6)

and (7) were investigated, the following results were

computed using a second-order solution for the dispersion
calculations [see (7) ] and a first-order solution for charac-

teristic-impedance calculation.

The comparison of these results with the values ob-

tained by Mariani et al. [3] is shown in Fig. 3 and indicates

a very close agreement for the two arbitrarily chosen sets

of parameters. The average computation time on the IBM
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Fig. 3. Characteristic impedance of a single slot.

360 computer was 27s for each value of D/A. A first-order

solution for the dispersion characteristic used in connection

with distribution (6) required only 2.5 s and produced

results which differed by less than 10 percent from those

obtained using the second-order solution.

IV. CHARACTERISTICS OF A PAIR OF COUPLED

SLOT LINES OF EQUAL WIDTH

Since the mathematical method developed so far pro-

duced results in agreement with those obtained by Cohn

(which have been confirmed by several experiments) the

method was applied to the analysis of two coupled slot

lines, the geometry of which is shown in Fig. 4. This exten-

sion is straightforward for the following reason. The

coefficients N1 through Nk are functions of a, B, e,, and

D, and are independent of the slot configuration. The slot

configuration enters into the calculation only through

coefficients in the assumed field distributions or basis

functions. Thus it is necessary only to modify (7) such

that the mathematical description of the basis functions

corresponds to the physical configuration and field dis-

tributions of the coupled slots.

Fig. 5 shows the two assumed distributions of electric

field en for the even and odd modes, respectively. The

change in the field component e, is similar. In the Fourier

domain, one simply applies the shifting theorem to the
transforms of (7) to obtain the new transforms. Further-

more, (8) is changed to

V02

zo=~
avg

(12)

M2TAL

/////////////A

t
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Fig. 4. Coupled slots.
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since the total time-averaged power surrounding the

transmission lines is now due to two lines. Beyond this /.4.:.

change, no major modifications were necessary to use the
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existing computer program. Figs. 6 and 7 show the results
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for several values of e, where 2.. and ZOOdenote the even-
(-!

Fig. 6. (a) Even- and odd-mode characteristic impedances for

and odd-mode characteristic impedances, respectively. A coupled slots with W/D = 0.25, + = 11. (b) Even- and odd-mode

first-order approximation was used to calculate the dis-
dispersion characteristics for coupled slots with W/D = 0.25,
6 = 11.

persion and-t_he characteristic impedances to reduce the
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Fig. 7. (a) Even- and odd-mode characteristic impedances for
coupled slots with W/D = 0.4, c, = 16. (b) Even- and odd-mode
~~~&m characteristics for coupled slots with W/D = 0.4,

computer time which was, on the average, 80 s for both

the odd and even modes. To the authors’ knowledge, these

results are basically new in the literature and can be only

partially compared to other results. A quantitative com-

parison between these results for the odd-mode charac-

teristic impedance and the quasi-static CPW impedance

calculated by Davis et al. [5] can be made and is shown in

Fig. 8 for W/D = 1 (or in the notation of [5], t = s) at

frequencies of 1, 3, and 5 GHz. Reasonable agreement

exists for the lower frequency range. Note that the charac-

teristic impedance of the CPW is one half of ZOOfor equal

slot widths. Another qualitative check on these results
can be made by investigating the even-mode characteristic

impedance in the limiting case as S, the separation be-

tween slots, becomes very small. One expects that Z08 will

be close to one half of ZO, where ZO is the characteristic

impedance of a single slot whose width is twice the width

of the slot in the coupled structure. The dkpersion charac-

teristic for both structures, however, should be the same.

This comparison is made in Figs. 6(a) and 7(a). It is
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Fig. 9, Coplanar strip transmission line,

interesting to observe the coupling and decoupling between

the waves in the two slots as the frequency varies for large

values of S/D. As the frequency increases, the waves

become more closely bound to the slot which means there

is less interaction between the two waves. In this case,

ZO, and ZOOconverge to ZO, the characteristic impedance

of a single slot with no coupling.

Another interesting phenomenon is the fact that for a

fixed D/A the ratio i’/h in the even mode first increases

and then decreases as S/D increases from very small to

larger values as shown in Figs. 6(b) and 7 (bj. An ex-

planation may be given as follows. For small enough values

of S/D, the metal strip between the slots has little effect

on the propagating wave, and the wave propagates as if

it were in a slot of width 2 (W/D) + S/D. Increasing the

separation between the slots effectively increases slot

width (the metal separation still has little effect), and

the ratio At/k increases. As S/D continues to increase, the

two waves start to decouple and behave more as two

waves on two slot lines which will finally be totally de-

coupled. Each wave then propagates on a slot line with

width W/D, hence X’/h decreases.

V. CHARACTERISTICS OF COPLANAR

STRIP LINE

A configuration of a pair of coplanar strip lines is shown

in Fig. 9. The dispersion characteristic and the charac-

teristic impedance can be found by again using Galerkin’s

method in the Fourier transform domain. Since an ap-
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Fig. 11. (a) Dispersion characteristics of coplanar strips with
W/D = 1.5, + = 9. (b) Characteristic impedance of coplanar
strips with W/D = 1.5, % = 9.

proximation of the current density across each strip is

more feasible than an approximation of the electric field

at y = D, the equation set (4) was used to determine the

dispersion characteristic. A first-order solution was ob-
tained assuming that the surface current in the x direction

was negligible and that the z-directed surface current was

of the form

1 +1

{(w/2)’ – [x* (S’+ w)/2-J’}’/”

jz(x) =

1
ls/2<]x I< fs/2+w

o, elsewhere (13)

over each strip. The characteristic impedance was calculated

as

Zo = 2PaJI# (14)

where 10 is the total current on one strip. Any further

necessary formulations were very similar to the previously
outlined procedure for slot lines. Three representative

graphs for the dispersion characteristics and charac-

teristic impedances are shown in Figs. 10-12. Reasonable

agreement for the impedances is found by comparing the

present values with the results by Wen [4]. However, as

one might expect, the present method yields somewhat

larger values for the impedance due to the finite dielectric

substrate.

VI. EXPERIMENTAL RESULTS

Although all previous comparisons showed reasonable

agreement with existing results, some effort was devoted

to obtaining experimental verification of this work. One
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Fig. 12. (a) Dispersion characteristics of coplanar strips with
W/D = 1.5, e, = 20. (b) Characteristic impedance of coplanar
strips with W/D = 1.5, c, = 20.

experimental check is provided in the work of Luna [7]

who measured the characteristics of coplanar strips and

found an agreement of better than 5 percent between

theory and experiment. The authors further confirmed

the accuracy of the results for coupled slots by construcb

ing a slot-line coupler.

Coupled slots (W/D = 0.470, i3/D = 1.08) were etched

onto one side of a 1-OZ copper surface on a dielectric sub-

strate with D = 0.125 in, and e, = 16. Microstrip-to-slot

transitions [8] were used at three ports, and the fourth
was terminated with a chip resistor. A center frequency

of 3 GHz (1 = 1.6 cm) was chosen.

The work of Jones and Bolljahn [11] has been extended

by Zysman and Johnson [9] who have derived the im-

pedance matrix of d~persive coupled lines. Using the

results presented earlier, the elements of the impedance

matrix of the coupler were evaluated, and its performance

as a function of frequent y was calculated. The theoretical

performance is compared with experiment in Fig. 13. Good

correlation is evident. The deterioration of directivity

noted experimentally at the band edges is in all probability

due to the rising VSWR of the microstrip-slot transitions

at these frequencies. It should be noted that the behavior

of this coupler is dHferent than that of the contradirec-

tional (nondispersive) strip-line coupler. Here the dif-

ference in the phase velocities of the odd and even modes

results in codhectional coupling as in waveguide (see also

Mariani and Agrios [10]). Further investigations into

the behavior of dispersive couplers have been undertaken

and preliminary results have been reported elsewhere [12].

VII. CONCLUSIONS

An efficient numerical method has been presented for

obtaining the dispersion characteristics and the charac-

teristic impedances for a single slot line, two parallel slot

lines of equal width, and two parallel coplanar strips.

Solutions to the wave propagation problem were obtained

in the Fourier transform domain. Numerical results ob-

-10mFawam Cam.w’w

~ -20
TNEcm’
ExPERIMENT

~
SEVENSE COWLING

AAA AA
g -30

~ A

fj -40

20 S.O 4.0

FREQUENCY IN GHZ

Fig, 13. Theoretical and exp&riiptal response for a slot-line

tained by this method have been presented and compared

or related to other existing data and to experiment. In all

cases, good agreement was obtained.

The transform technique is relatively straightforward

in concept, but extensive algebraic manipulation of the

resulting equations is required to achieve computational

efficiency. The labor involved should not be underesti-

mated. For this reason, the equations have rmt been

presented here in detail. The authors expect to make this

information available in a technical report in the near

future. It is also anticipated that design curves will be

made available in a technical report.
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Scattering Matrices of Junction Circulator with

Chebyshev Characteristics

JOSEPH HELSZAJN, MEMBER, IEEE

Absfrac+The purpose of this paper is to derive the scattering
matrix of junction circulators with Chebyshev characteristics. This

is done by forming the overall eigenvalues of the circulator one at

a time in terms of the -4BCD matrix of the matching network and
the initial set of the junction eigenvalues. This paper deals both with
the case where the frequency variation of the in-phase eigennetwork
at the gyrator terminals is neglected compared to that of the coun-
terrotating ones, end with the case where it is included. It is found
that the former approach is in excellent agreement with the results
obtained by assuming a l-port model for the circulator. The influence
of tMs eigennetwork on the overall frequency response is studied

separately by combining the electromagnetic and network problems
in the case of the stripline circulator.

INTRODUCTION

THE THEORY of wide-band circulators using external

matching networks usually starts by assuming that

the equivalent circuit of the device is a l-port network
[1]–[8]. This l-port circuit consists of a shunt conductance

in parallel with either a lumped or distributed resonator.

It assumes that the frequency behavior of the in-phase

eigennetwork at the gyrator terminals may be omitted

compared with that of the two counterrotating ones. The

bandwidth over which this approximation applies has been

discussed in [8] in terms of the resonant frequencies of the

counterrotating eigennetworks, but a fuller investigation

of the omission of the frequency variation of the in-phase
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eigennetwork on the quality of this equivalent circuit

appears desirable.

The most general representation of the 3-port circulator

is in terms of the eigenvalues of the scattering matrix [9].

The eigenvalues of this matrix are reflection coefficients

associated with the different ways of exciting the junction.

The entries of the scattering matrix are constructed by

taking linear combinations of these eigenvalues. This

method therefore yields not only the reflection coefficient

at the input port but also the transmission coefficients of

the junction. The approach is quite general and applies

to the m-port junction also. It starts by representing the

matching network at each port by its ABCD matrix. The

eigenvalues at the input terminals of the junction are then

obtained one at a time in terms of the ABCD parameters

and the initial set of eigenvalues at the gyrator terminals.
In this paper the boundary condition for circulators

with Chebyshev frequency characteristics is fist estab-

lished at the terminals of the matching network in terms

of the eigenvalues of the scattering matrix by omitting the

frequency variation of the in-phase eigennetwork at the

gyrator terminals and subsequently reintroducing it to

study its influence on the overall frequency response. It

is found that the former results are in excellent agreement

with those obtained by connecting the matching network

directly to the l-port circuit [8].

The influence of the in-phase eigenvalue on the overall

frequency response of the circulator is studied separately

in the case of the sttipline circulator by combining the


